
Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 1 © Andrew Davison 2017

Part 1: Basics

Chapter 2. Starting and Stopping

Chapter 1 introduced some of the core ideas of Office.

Now it's time to show how these data structures and

relationships (e.g. service, interfaces, FCM, inheritance)

are programmed in Office's Java API.

This chapter will focus on the most fundamental tasks:

starting Office, loading (or creating) a document, saving

and closing the document, and shutting down Office. The

DocConverter.java example at the end pulls these together to show how to convert a

document into another format.

All the examples come from the "Office Tests" directory in the code download

associated with this book, and make liberal use of the classes in the "Utils" directory.

For details please visit http://fivedots.coe.psu.ac.th/~ad/jlop/.

My aim with these utilities is to hide some of the verbiage of Office. When (if?) a

programmer feels ready for more detail, then my code is documented. I'll only explain

functions here that illustrate Office ideas, such as service managers and components.

This is the first chapter with code, and so the first where programs could crash!

Section 8 gives a few tips on bug detection and reporting.

1. Starting Office

Every program must load Office before working with a document, and shut it down

before exiting. These tasks are handled by loadOffice() and closeOffice() from the Lo

utility class. A typical program will look like the following:

import com.sun.star.uno.*;

import com.sun.star.lang.*;

import com.sun.star.frame.*;

public class OfficeInfo

{

 public static void main(String[] args)

 {

 XComponentLoader loader = Lo.loadOffice();

 // load, manipulate and close a document

 Lo.closeOffice();

 } // end of main()

} // end of OfficeInfo class

Topics: Starting Office;

Closing Down/Killing

Office; Opening a

Document; Creating a

Document; Saving;

Closing; Document

Conversion; Bug

Detection and Reporting

Example folders: "Office

Tests" and "Utils"

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 2 © Andrew Davison 2017

Lo.loadOffice() invokes Office and sets up a UNO bridge using named pipes. There's

also a Lo.loadSocketOffice() which uses sockets instead of pipes. Both functions

return a reference to a component loader which can be used to load a document.

loadOffice() and loadSocketOffice() call a one-argument version of loadOffice()

which uses a boolean to decide whether to use pipes or sockets to link to Office. In

both cases, a remote component context is created on the Java side (see Chapter 1,

Figure 2) and then a service manager, Desktop object, and component loader are

initialized. The code below shows some details:

// in the Lo class

// globals

private static XComponentContext xcc = null;

private static XDesktop xDesktop = null;

private static XMultiComponentFactory mcFactory = null;

public static XComponentLoader loadOffice(boolean usingPipes)

{

 System.out.println("Loading Office...");

 if (usingPipes)

 xcc = bootstrapContext(); // connects to office via pipes

 else

 xcc = socketContext(); // connects to office via a socket

 if (xcc == null) {

 System.out.println("Office context could not be created");

 System.exit(1);

 }

 // get the remote office service manager

 mcFactory = xcc.getServiceManager();

 if (mcFactory == null) {

 System.out.println("Office Service Manager is unavailable");

 System.exit(1);

 }

 // desktop service handles application windows and documents

 xDesktop = createInstanceMCF(XDesktop.class,

 "com.sun.star.frame.Desktop");

 if (xDesktop == null) {

 System.out.println("Could not create a desktop service");

 System.exit(1);

 }

 // XComponentLoader provides ability to load components

 return Lo.qi(XComponentLoader.class, xDesktop);

} // end of loadOffice()

loadOffice() probably illustrates my most significant coding decisions – the use of

global static variables inside the Lo class. In particular, the XComponentContext,

XDesktop, and XMultiComponentFactory objects created by loadOffice() are stored

globally for later use. I chose this approach since it allows other support functions to

be called with simpler arguments because the objects can be accessed without the user

having to explicitly pass around references to them. The main drawback is that

loadOffice() cannot be safely called more than once (i.e. it is non-reentrant) since a

second call will overwrite the globals set during the first call.

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 3 © Andrew Davison 2017

The creation of the XDesktop interface object uses createInstanceMCF():

// in the Lo class

public static <T> T createInstanceMCF(Class<T> aType,

 String serviceName)

{ if ((xcc == null) || (mcFactory == null)) {

 System.out.println("No office connection found");

 return null;

 }

 T interfaceObj = null;

 try { // get service, then interface

 Object o = mcFactory.createInstanceWithContext(serviceName, xcc);

 interfaceObj = Lo.qi(aType, o);

 }

 catch (Exception e) {

 System.out.println("Couldn't create interface for \"" +

 serviceName + "\": " + e);

 }

 return interfaceObj;

} // end of createInstanceMCF()

public static <T> T qi(Class<T> aType, Object o)

// the "Loki" function -- reduces typing

{ return UnoRuntime.queryInterface(aType, o); }

If you ignore the error-checking, createInstanceMCF() does two things. The call to

XMultiComponentFactory.createInstanceWithContext() asks the service manager

(mcFactory) to create a service object inside the remote component context (xcc).

Then the call to UnoRuntime.queryInterface() looks inside the service instance for the

specified interface (aType), returning an instance of the interface as its result.

My Lo.qi() function's only purpose is to reduce programmer typing, since calls to

UnoRuntime.queryInterface() are very common.

The use of generics makes createInstanceMCF() useful for creating any type of

interface object. Unfortunately, generics aren't utilized in the Office API, which relies

instead on Object, Office's Any class, or the XInterface class which is inherited by all

interfaces.

A Quick Look at Sockets

Note: you can skip this section if socket communication with Office isn't of interest.

loadOffice() starts by calling bootstrapContext() or socketContext() to create a remote

component context. bootstrapContext() is very short since it build a UNO bridge

based on named pipes using Office's Bootstrap class. However, I also implemented a

socket-based bridge, in Lo.socketContext(). The steps it performs are:

 invoke Office as a process using sockets;

 create a local component context and service manager (local in the sense of

being in the Java process);

 connect to Office via its socket. I use the Connector service, but another

approach is to employ the UnoUrlResolver service;

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 4 © Andrew Davison 2017

 layer a UNO bridge on top of the socket link;

 retrieve a reference to the remote component context via the UNO bridge

(remote in the sense that it refers across process boundaries to Office).

Office's own Bootstrap class implements a similar sequence of steps for linking to

Office via pipes. It starts Office by calling Java's Runtime.exec(), and I've used the

same approach, but assumed that soffice.exe is part of Window's PATH environment

variable. The relevant code fragment is:

String[] cmdArray = new String[3];

cmdArray[0] = "soffice";

cmdArray[1] = "-headless";

cmdArray[2] = "-accept=socket,host=localhost,port=" +

 SOCKET_PORT + ";urp;";

Process p = Runtime.getRuntime().exec(cmdArray);

SOCKET_PORT has the value 8100. Since this port number is fixed, it’s possible to

check the socket’s status outside Office. For example, on Windows, I type:

netstat | grep 8100

If you wondering where grep comes from, I got it from gow

(https://github.com/bmatzelle/gow), a light-weight installer of UNIX command line

utilities for Windows.

2. Closing Down/Killing Office

Lo.closeOffice() shuts down Office by calling terminate() on the XDesktop instance

created inside loadOffice():

boolean isDead = xDesktop.terminate()

This is usually sufficient but occasionally I've found it necessary to delay the

terminate() call for a few milliseconds in order to give Office components time to

finish. I noticed this especially when using an OfficeBean panel for displaying

documents (which I'll describe much later in Chapter 44). As a consequence,

Lo.closeDown() may actually call terminate() a few times, until it returns true.

While developing/debugging code, it's quite easy to inadvertently trigger a runtime

exception in the Office API. In the worst case, this can cause your program to exit

without calling Lo.closeDown(). This will leave an extraneous Office process running

in the OS, which should be killed. The easiest way is with a Windows batch file

containing:

taskkill /f /t /im soffice.exe

This uses the fact that the office process is called soffice.exe. Another useful batch

script is one that checks only if the process is running:

tasklist /FI "IMAGENAME eq soffice.exe"

These are packaged up as lokill.bat and lolist.bat in my code. So if you're unsure if

Office is really dead, type:

lokill

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 5 © Andrew Davison 2017

at a command prompt.

The Unix shell script versions of these files could use killall, pkill, ps, or kill.

Lo.killOffice() inelegantly terminates Office by calling the lokill.bat script from

inside Java:

// part of the Lo class

public static void killOffice()

{

 try {

 Runtime.getRuntime().exec("cmd /c lokill.bat");

 System.out.println("Killed Office");

 }

 catch (java.lang.Exception e) {

 System.out.println("Unable to kill Office: " + e);

 }

} // end of killOffice()

The code is nasty since it relies on there being a cmd.exe OS tool and a lokill.bat

batch file in the current directory.

3. Opening a Document

The general format of a program that opens a document, manipulates it in some way,

and then saves it, is:

public static void main(String[] args)

{

 XComponentLoader loader = Lo.loadOffice();

 XComponent doc = Lo.openDoc(args[0], loader);

 if (doc == null) {

 System.out.println("Could not open " + args[0]);

 Lo.closeOffice();

 return;

 }

 // use the Office API to manipulate doc...

 Lo.saveDoc(doc, "foo.docx"); // save as a Word file

 Lo.closeDoc(doc);

 Lo.closeOffice();

} // end of main()

The new methods are Lo.openDoc(), Lo.saveDoc(), and Lo.closeDoc().

openDoc() calls XComponentLoader.loadComponentFromURL(), which requires a

document URL, the type of Office frame used to display the document, optional

search flags, and an array of document properties. For example:

String fileURL = FileIO.fnmToURL(fnm);

PropertyValue[] props = Props.makeProps("Hidden", true);

XComponent doc =

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 6 © Andrew Davison 2017

 loader.loadComponentFromURL(fileURL, "_blank", 0, props);

The frame type is almost always "_blank" which indicates that a new window will be

created for the newly loaded document. (Other possibilities are listed in the

XComponentLoader documentation which you can access with lodoc

XComponentLoader.) The search flags are usually set to 0, and document properties

are stored in the PropertyValue array, props.

loadComponentFromURL()'s return type is XComponent, which refers to the

document.

FileIO.fnmToURL() converts an ordinary filename (e.g. “foo.doc”) into a URL (a full

path prefixed with file:///).

Props.makeProps() takes a property name and value and returns a PropertyValue

array; there are several variants which accept different numbers of property name-

value pairs.

A complete list of document properties can be found in the MediaDescriptor

documentation (accessed with lodoc MediaDescriptor service), but some of the

important ones are listed in Table 1.

Property Name Use

AsTemplate Creates a new document using a specified template.

Hidden Determines if the document is invisible after being

loaded.

ReadOnly Opens the document read-only.

StartPresentation Starts showing a slide presentation immediately after

loading the document.

Table 1. Some Document Properties.

4. Creating a Document

A new document is created by calling

XComponentLoader.loadComponentFromURL() with a special URL string for the

document type. The possible strings are listed in Table 2.

URL String Document Type

"private:factory/swriter" Writer

"private:factory/sdraw" Draw

"private:factory/simpress" Impress

"private:factory/scalc" Calc

"private:factory/sdatabase" Base

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 7 © Andrew Davison 2017

"private:factory/swriter/web" HTML document in Writer

"private:factory/swriter/GlobalDocument" A Master document in Writer

"private:factory/schart" Chart

"private:factory/smath" Math Formulae

".component:Bibliography/View1" Bibliography Entries

".component:DB/QueryDesign"

".component:DB/TableDesign"

".component:DB/RelationDesign"

".component:DB/DataSourceBrowser"

".component:DB/FormGridView"

Database User Interfaces

Table 2. URLs for Creating New Documents.

For instance, a Writer document is created by:

XComponent doc =

 loader.loadComponentFromURL("private:factory/swriter",

 "_blank", 0, props);

The utility classes include code for simplifying the creation of Writer, Draw, Impress,

Calc, and Base documents, which I'll be looking at in later chapters.

A Second Service Manager

Lo.loadDoc() and Lo.createDoc() do a bit of additional work after document

loading/creation – they instantiate a XMultiServiceFactory service manager which is

stored in the Lo class. This is done by applying Lo.qi() to the document:

// global in Lo.java

private static XMultiServiceFactory msFactory = null;

// in loadDoc()

XComponent doc =

 loader.loadComponentFromURL(fileURL, "_blank", 0, props);

msFactory = Lo.qi(XMultiServiceFactory.class, doc);

I first employed Lo.qi() in createInstanceMCF() to access an interface inside a

service. This time qi() is casting one interface (XComponent) to another

(XMultiServiceFactory).

The XMultiServiceFactory object is the second service manager we've encountered;

the first was an XMultiComponentFactory instance, created during Office's loading.

The reasons for Office having two service managers are historical: the

XMultiServiceFactory manager is older, and creates a service object without the need

for an explicit reference to the remote component context.

As Office developed, it was decided that service object creation should always be

relative to an explicit component context, and so the newer XMultiComponentFactory

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 8 © Andrew Davison 2017

service manager came into being. A lot of older code still uses the

XMultiServiceFactory service manager, so both are supported in the Lo class.

Another difference between the managers is that the XMultiComponentFactory

manager is available as soon as Office is loaded, while the XMultiServiceFactory

manager is initialized only when a document is loaded or created.

5. Saving a Document

One of the great strengths of Office is that it can export a document in a vast number

of formats, but the programmer must specify the output format (which is called a filter

in the Office documentation).

XStorable.storeToURL() takes the name of the output file (in URL format), and an

array of properties, one of which should be "FilterName". Two other useful output

properties are "Overwrite" and "Password". Input and output document properties are

listed in the MediaDescriptor service documentation (lodoc MediaDescriptor

service).

If "Overwrite" is set to true then the file will be saved without prompting the user if

the file already exists. The "Password" property contains a string which must be

entered into an Office dialog by the user before the file can be opened again.

The steps in saving a file are:

String saveFileURL = FileIO.fnmToURL(fnm);

String[] nms = new String[] {"Overwrite", "FilterName", "Password"};

Object[] vals = new Object[] {true, format, password};

PropertyValue[] storeProps = Props.makeProps(nms, vals);

XStorable store = Lo.qi(XStorable.class, doc);

store.storeToURL(saveFileURL, storeProps);

I've used a variant of the Props.makeProps() method to create an array of three

properties. If you don't want a password, then the third property should be left out.

Lo.qi() is used again to cast an interface, this time from XComponent to XStoreable.

Figure 5 in Chapter 1 shows that XStoreable is part of the OfficeDocument service,

which means that it's inherited by all Office document types.

What's a Filter Name?

XStorable.storeToURL() needs a "FilterName" property value, but what should the

string be to export the document in Word format for example?

Info.getFilterNames() returns an array of all the filter names supported by Office.

There's an example call in OfficeInfo.java, but is commented out because it returns a

250+ element list!

Rather than force a programmer to search through this list for the correct name,

Lo.saveDoc() allows him to supply just the name and extension of the output file. For

example, in section 3, Lo.saveDoc() was called like so:

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 9 © Andrew Davison 2017

Lo.saveDoc(doc, "foo.docx");

saveDoc() extracts the file extension (i.e. "docx") and maps it to a corresponding filter

name in Office (in this case, "Office Open XML Text"). One concern is that it's not

always clear which extension-to-filter mapping should be utilized. For instance,

another suitable filter name for "docx" is "MS Word 2007 XML". I've essentially

ignored this problem, by hardwiring a fixed selection into saveDoc().

Another issue is that the choice of filter sometimes depends on the extension and the

document type. For example, a Writer document saved as a PDF file should use the

filter "writer_pdf_Export", but if the document is a spreadsheet then

"calc_pdf_Export" is the correct choice. Consequently, saveDoc() examines both the

extension and the document's service name, which is accessed via the XServiceInfo

interface:

XServiceInfo xInfo = Lo.qi(XServiceInfo.class, doc);

boolean isWriter = // is it a Writer doc?

 xInfo.supportsService("com.sun.star.text.TextDocument");

The main document service names are listed in Table 3.

Document Type Service Name

Writer com.sun.star.text.TextDocument

Draw com.sun.star.drawing.DrawingDocument

Impress com.sun.star.presentation.PresentationDocument

Calc com.sun.star.sheet.SpreadsheetDocument

Base com.sun.star.sdb.OfficeDatabaseDocument

Table 3. Document Service Names.

We encountered these service names back in Chapter 1, Figure 8 – they're subclasses

of the OfficeDocument service.

A third problem is incompletness; I've only implemented saveDoc() mappings for a

small subset of Office's 250+ filter names, so if you try to save a file with an exotic

extension then my code will most likely break.

If you want to study the details, start with Lo.saveDoc(), and burrow down; the

trickiest part is Lo.ext2Format().

6. Closing a Document

Closing a document is a pain if you want to check with the user beforehand: should a

modified file be saved, thereby overwriting the old version? My solution is not to

bother the user, so the file is closed without saving, irrespective of any modifications.

In other words, it's essential to explicitly save a changed document with

Lo.saveDoc() before calling Lo.closeDoc().

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 10 © Andrew Davison 2017

The code for closing employs Lo.qi() to cast the document's XComponent interface to

XCloseable:

XCloseable closeable = Lo.qi(XCloseable.class, doc);

closeable.close(false); // doc. closed without saving

7. A General Purpose Converter

The DocConverter.java example in "Office Tests/" takes two command line

arguments: the name of an input file and the extension that should be used when

saving the loaded document. For instance:

run DocConverter points.ppt odp

will save slides in MS PowerPoint format as an Impress presentation. The following

converts a JPEG image into PNG:

run DocConverter skinner.jpg png

The code for DocConverter is short:

import com.sun.star.uno.*;

import com.sun.star.lang.*;

import com.sun.star.frame.*;

public class DocConverter

{

 public static void main(String args[])

 {

 if (args.length != 2) {

 System.out.println("Usage: DocConverter fnm extension");

 return;

 }

 XComponentLoader loader = Lo.loadOffice();

 XComponent doc = Lo.openDoc(args[0], loader);

 if (doc == null) {

 System.out.println("Could not open " + args[0]);

 Lo.closeOffice();

 return;

 }

 String name = Info.getName(args[0]);

 Lo.saveDoc(doc, name + "." + args[1]);

 Lo.closeDoc(doc);

 Lo.closeOffice();

 } // end of main()

} // end of DocConverter class

8. Bug Detection and Reporting

This chapter began our coding with the Office API, and so the possibility of bugs also

becomes an issue. If you find a problem with one of my support classes (e.g. in

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 11 © Andrew Davison 2017

Lo.java) or one of my examples (e.g. in DocConverter.java), then please contact me at

ad@fivedots.coe.psu.ac.th, supplying as much detail as possible.

Another source of bugs is the LibreOffice API itself, which is hardly a surprise

considering its complexity and age. If you find a problem, then you should first search

LibreOffice's Bugzilla site at https://bugs.documentfoundation.org/ to see if the

problem has been reported previously (it probably has). Various types of search are

explained in the Bugzilla documentation at

https://bugs.documentfoundation.org/docs/en/html/using/

If you want to report a new bug, then you'll need to set up an account, which is quite

simple, and also explained by the documentation.

Often when people report bugs they don't include enough information, perhaps

because the error window displayed by Windows is somewhat lacking. For example, a

typical crash report window is shown in Figure 1.

Figure 1. The LibreOffice Crash Reported by Windows 7.

If you're going to make an official report, you should first read the article "How to

Report Bugs in LibreOffice" (https://wiki.documentfoundation.org/QA/BugReport).

Expert forum members and Bugzilla maintainers sometimes point people towards

WinDbg for Windows as a tool for producing good debugging details. The wiki has a

detailed explanation of how to install and use it

(https://wiki.documentfoundation.org/How_to_get_a_backtrace_with_WinDbg),

which is a bit scary in its complexity.

A much easier alternative is the WinCrashReport application from NirSoft

(http://www.nirsoft.net/utils/application_crash_report.html). It presents the Windows

Error Reporting (WER) data generated by a crash in a readable form.

When a crash window appears (like the one in Figure 1), start WinCrashReport to

examine the automatically-generated error report, as in Figure 2.

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 12 © Andrew Davison 2017

Figure 2. WinCrashReport GUI

Figure 2 indicates that the problem lies inside mergedlo.dll, an access violation (the

exception code 0xC0000005) to a memory address.

mergedlo.dll is part of LibreOffice which probably means that you can find the DLL

in <OFFICE>/program. Most Office DLLs are located in that directory, but it's useful

to have a fast file search utility on your machine to find files that might be in third-

party libraries or in Windows. I use SwiftSearch

(https://sourceforge.net/projects/swiftsearch/).

WinCrashReport generates two alternative call stacks, with slightly more information

in the second in this case. mergedlo.dll is called by the uno_getCurrentEnvironment()

function in cppu3.dll, as indicated in Figure 3.

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 13 © Andrew Davison 2017

Figure 3. The Second Call Stack in WinCrashReport.

This narrows the problem to a specific function and two DLLs, which is very helpful.

If you want to better understand the DLLs, they can be examined using DLL Export

Viewer, another NirSoft tool (http://www.nirsoft.net/utils/dll_export_viewer.html),

which lists a DLL's exported functions. Running it on mergedlo.dll turns up nothing,

but the details for cppu3.dll are shown in Figure 4.

Figure 4. DLL Export Viewer's view of cppu3.dll

mergedlo.dll appears to be empty inside DLL Export Viewer because it exports no

functions. That probably means it's being used as a store for resources, such as icons,

cursors, and images. There's another NirSoft tool for looking at DLL resources, called

ResourcesExtract (http://www.nirsoft.net/utils/resources_extract.html).

The offending function must be uno_getCurrentEnvironment() which Figure 4

confirms to be in cppu3.dll.

Looking at the Source Code

Java LibreOffice Programming. Chapter 2. Starting Draft #2 (20th March 2017)

 14 © Andrew Davison 2017

You might want to narrow the problem down further by looking at

uno_getCurrentEnvironment()'s source. This is easy with the "OpenGrok for

LibreOffice" website (http://opengrok.libreoffice.org/) for searching the gigantic code

base. Figure 5 shows the results for an "uno_getCurrentEnvironment" search.

Figure 5. OpenGrok Results for "uno_getCurrentEnvironment"

The function's code is in EnvStack.cxx, which can be examined by clicking on the

linked function name shown at the bottom of Figure 5.

If you're interested in exploring the code base more widely, there are some very good

blog posts about it by Eilidh McAdam: "Exploring the LibreOffice code base"

(http://www.lanedo.com/exploring-the-libreoffice-code-base/) and "LibreOffice

Development Howto" (http://www.lanedo.com/libreoffice-development-howto/).

