{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2021,11,25]],"date-time":"2021-11-25T00:46:43Z","timestamp":1637801203553},"reference-count":81,"publisher":"Springer Science and Business Media LLC","issue":"1","license":[{"start":{"date-parts":[[2006,3,28]],"date-time":"2006-03-28T00:00:00Z","timestamp":1143504000000},"content-version":"tdm","delay-in-days":0,"URL":"http:\/\/www.springer.com\/tdm"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Mach Learn"],"published-print":{"date-parts":[[2006,10]]},"DOI":"10.1007\/s10994-006-6889-7","type":"journal-article","created":{"date-parts":[[2006,3,28]],"date-time":"2006-03-28T17:43:44Z","timestamp":1143567824000},"page":"31-78","source":"Crossref","is-referenced-by-count":724,"title":["The max-min hill-climbing Bayesian network structure learning algorithm"],"prefix":"10.1007","volume":"65","author":[{"given":"Ioannis","family":"Tsamardinos","sequence":"first","affiliation":[]},{"given":"Laura E.","family":"Brown","sequence":"additional","affiliation":[]},{"given":"Constantin F.","family":"Aliferis","sequence":"additional","affiliation":[]}],"member":"297","published-online":{"date-parts":[[2006,3,28]]},"reference":[{"key":"6889_CR1","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1016\/0169-2070(95)00664-8","volume":"12","author":"B. Abramson","year":"1996","unstructured":"Abramson, B., Brown, J., Edwards, W., Murphy, A., & Winkler, R. L. (1996). Hailfinder: A Bayesian system for forecasting severe weather. International Journal of Forecasting, 12, 57\u201371.","journal-title":"International Journal of Forecasting"},{"key":"6889_CR2","doi-asserted-by":"crossref","unstructured":"Acid, S., de Campos, L., Fernandez-Luna, J., Rodriguez, S., Rodriguez, J., & Salcedo, J. (2004). A comparison of learning algorithms for Bayesian networks: A case study based on data from an emergency medical service. Artificial Intelligence in Medicine, 30, 215\u2013232.","DOI":"10.1016\/j.artmed.2003.11.002"},{"key":"6889_CR3","doi-asserted-by":"crossref","unstructured":"Acid, S., & de Cam-pos, L. M. (2003). Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research, 445\u2013490.","DOI":"10.1613\/jair.1061"},{"key":"6889_CR4","doi-asserted-by":"crossref","unstructured":"Acid, S., & de Cam-pos, L. (2001). A hybrid methodology for learning belief networks: BENEDICT. International Journal of Approximate Reasoning, 235\u2013262.","DOI":"10.1016\/S0888-613X(01)00041-X"},{"key":"6889_CR5","doi-asserted-by":"crossref","first-page":"716","DOI":"10.1109\/TAC.1974.1100705","volume":"19","author":"H. Akaike","year":"1974","unstructured":"Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716\u2013723.","journal-title":"IEEE Transactions on Automatic Control"},{"key":"6889_CR6","unstructured":"Aliferis, C. F., Tsamardinos, I., Statnikov, A., & Brown, L. E. (2003a). Causal explorer: A causal probabilistic network learning toolkit for biomedical discovery. In International Conference on Mathematics and Engineering Techniques in Medicine and Biological Sciences (METMBS \u201903) (pp. 371\u2013376)."},{"key":"6889_CR7","unstructured":"Aliferis, C. F., Tsamardinos, I., & Statnikov, A. (2003b). HITON, A novel markov blanket algorithm for optimal variable selection. In American Medical Informatics Association (AMIA) (pp. 21\u201325)."},{"key":"6889_CR8","unstructured":"Andreassen, S., Jensen, F. V., Andersen, S. K., Falck, B., Kharulff, U., & Woldbye, M. (1989). MUNIN\u2014An expert EMG assistant. In J. E. Desmedt (Eds.), Computer-aided electromyography and expert systems."},{"key":"6889_CR9","unstructured":"Baeze-Yates, R., & Ribiero-Neto, B. (1999). Modern information retrieval. Addison-Wesley Pub Co."},{"key":"6889_CR10","unstructured":"Beal, M. J. & Ghahramani, Z. (2003). The variational Bayesian EM algorithm for incomplete data: With application to scoring graphical model structures. In J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, A. F. M. Smith, & M. West (Eds.), Bayesian statistics 7. Oxford University Press."},{"key":"6889_CR11","doi-asserted-by":"crossref","unstructured":"Beinlich, I. A., Suermondt, H., Chavez, R., Cooper, G., et al. (1989). The ALARM monitoring system: A case study with two probabilistic inference techniques for belief networks. In Second European Conference in Artificial Intelligence in Medicine.","DOI":"10.1007\/978-3-642-93437-7_28"},{"key":"6889_CR12","doi-asserted-by":"crossref","unstructured":"Binder, J., Koller, D., Russell, S., & Kanazawa, K. (1997). Adaptive probabilistic networks with hidden variables. Machine Learning, 29.","DOI":"10.1023\/A:1007421730016"},{"key":"6889_CR13","unstructured":"Bouckaert, R. (1995). Bayesian belief networks from construction to inference. Ph.D. thesis, University of Utrecht."},{"key":"6889_CR14","unstructured":"Brown, L., Tsamardinos, I., & Aliferis, C. (2004). A novel algorithm for scalable and accurate bayesian network learning. In 11th World Congress on Medical Informatics (MEDINFO). San Francisco, California."},{"key":"6889_CR15","unstructured":"Brown, L. E., Tsamardinos, I., & Aliferis, C. F. (2005). A comparison of novel and state-of-the-art polynomial Bayesian network learning algorithms. In Proceedings of the Twentieth National Conference on Artificial Intelligence (AAAI)."},{"key":"6889_CR16","doi-asserted-by":"crossref","unstructured":"Chapman, W. W., Fizman, M., Chapman, B. E. & Haug, P. J. (2001). A comparison of classification algorithms to automatically identify chest X-ray reports that support pneumonia. Journal of Biomedical Informatics, 34, 4\u201314.","DOI":"10.1006\/jbin.2001.1000"},{"key":"6889_CR17","unstructured":"Cheng, J., Bell, D., & Liu, W. (1998). Learning Bayesian networks from data: An efficient approach based on information theory. Technical report, University of Alberta, Canada."},{"key":"6889_CR18","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/S0004-3702(02)00191-1","volume":"137","author":"J. Cheng","year":"2002","unstructured":"Cheng, J., Greiner, R., Kelly, J., Bell, D. A. & Liu, W. (2002). Learning Bayesian networks from data: An information-theory based approach. Artificial Intelligence, 137, 43\u201390.","journal-title":"Artificial Intelligence"},{"key":"6889_CR19","unstructured":"Chickering, D. (1995). A transformational characterization of equivalent Bayesian network structures. In Proceedings of the 11th Annual Conference on Uncertainty in Artificial Intelligence (UAI-95). San Francisco, CA (pp. 87\u201398). Morgan Kaufmann Publishers."},{"key":"6889_CR20","doi-asserted-by":"crossref","unstructured":"Chickering, D. (1996). Learning Bayesian networks is NP-complete. In D. Fisher and H. Lenz (Eds.), Learning from data: Artificial intelligence and statistics V (pp. 121\u2013130) Springer-Verlag.","DOI":"10.1007\/978-1-4612-2404-4_12"},{"key":"6889_CR21","unstructured":"Chickering, D. (2002b). Learning equivalence classes of Bayesian-network structures. Journal of Machine Learning Research, 445\u2013498."},{"key":"6889_CR22","unstructured":"Chickering, D., Geiger, D. & Heckerman, D. (1995). Learning Bayesian networks: Search methods and experimental results. In Fifth International Workshop on Artificial Intelligence and Statistics (pp. 112\u2013128)."},{"key":"6889_CR23","first-page":"1287","volume":"5","author":"D. Chickering","year":"2004","unstructured":"Chickering, D., Meek, C. & Heckerman D. (2004). Large-sample learning of Bayesian networks is NP-hard. Journal of Machine Learning Research, 5, 1287\u20131330.","journal-title":"Journal of Machine Learning Research"},{"key":"6889_CR24","unstructured":"Chickering, D. M. (2002a). Optimal structure identification with greedy search. Journal of Machine Learning Research, 507\u2013554."},{"issue":"4","key":"6889_CR25","first-page":"309","volume":"9","author":"G. F. Cooper","year":"1992","unstructured":"Cooper, G. F., & Herskovits, E. (1992). A Bayesian method for the induction of probabilistic networks from data. Machine Learning, 9 (4), 309\u2013347.","journal-title":"Machine Learning"},{"key":"6889_CR26","unstructured":"Cowell, R. G., Dawid, A. P., Lauritzen, S. L., & Spiegelhalter, D. J. (1999). Probabilistic networks and expert systems. Springer."},{"key":"6889_CR27","unstructured":"Dash, D. (2005). Restructuring dynamic causal systems in equilibrium. In Proceedings of the Tenth International Workshop on Artificial Intelligence and Statistics (AIStats 2005)."},{"key":"6889_CR28","unstructured":"Dash, D. & Druzdzel, M. (1999). A hybrid anytime algorithm for the construction of causal models from sparse data. In Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI-99)."},{"key":"6889_CR29","unstructured":"Dash, D., & Druzdzel, M. (2003). Robust independence testing for constraint-based learning of causal structure. In Proceedings of the Nineteenth Annual Conference on Uncertainty in Artificial Intelligence (UAI-03) (pp. 167\u2013174), Morgan Kaufmann."},{"key":"6889_CR30","unstructured":"Dor, D., & Tarsi, M. (1992). A simple algorithm to construct a consistent extension of a partially oriented graph. Technicial Report R-185, Cognitive Systems Laboratory, UCLA."},{"key":"6889_CR31","unstructured":"Friedman, N. (1998). The Bayesian structural EM algorithm. In Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence (UAI-98). (pp. 129\u2013138), San Francisco, CA, Morgan Kaufmann Publishers."},{"key":"6889_CR32","doi-asserted-by":"crossref","first-page":"601","DOI":"10.1089\/106652700750050961","volume":"7","author":"N. Friedman","year":"2000","unstructured":"Friedman, N., Linial, M., Nachman, I., & Pe\u2019er, D. (2000). Using Bayesian networks to analyze expression data. Computational Biology, 7, 601\u2013620.","journal-title":"Computational Biology"},{"key":"6889_CR33","unstructured":"Friedman, N., Nachman, I., & Pe\u2019er, D., (1999). Learning Bayesian network structure from massive datasets: The \u201csparse candidate\u201d algorithm. In Fifteenth Conference on Uncertainty in Artificial Intelligence (UAI-99)."},{"key":"6889_CR34","unstructured":"Ghahramani, Z., & Beal, M. (2001). Graphical models and variational methods. In M. Opper, & D. Saad (Eds.), Advanced mean field methods\u2014Theory and practice. MIT Press."},{"key":"6889_CR35","unstructured":"Glymour, C., & Cooper, G. F. (eds.) (1999). Computation, causation, and discovery. AAAI Press\/The MIT Press."},{"key":"6889_CR36","doi-asserted-by":"crossref","unstructured":"Glymour, C. N. (2001). The mind\u2019s arrows: Bayes nets & graphical causal models in psychology. MIT Press.","DOI":"10.7551\/mitpress\/4638.001.0001"},{"key":"6889_CR37","doi-asserted-by":"crossref","unstructured":"Goldenberg, A., & Moore, A. (2004). Tractable learning of large Bayes net structures from sparse data. In Proceedings of 21st International Conference on Machine Learning.","DOI":"10.1145\/1015330.1015406"},{"key":"6889_CR38","first-page":"197","volume":"20","author":"D. E. Heckerman","year":"1995","unstructured":"Heckerman, D. E., Geiger, D., & Chickering, D. M. (1995). Learning Bayesian networks: The combination of knowledge and statistical data. Machine Learning, 20, 197\u2013243.","journal-title":"Machine Learning"},{"key":"6889_CR39","unstructured":"Jensen, A., & Jensen, F. (1996). Midas\u2014An influence diagram for management of mildew in winter wheat. In Proceedings of the 12th Annual Conference on Uncertainty in Artificial Intelligence (UAI-96) (pp. 349\u2013356). Morgan Kaufmann Publishers."},{"key":"6889_CR40","unstructured":"Jensen, C. S. (1997). Blocking Gibbs sampling for inference in large and complex Bayesian networks with applications in genetics. Ph.D. thesis, Aalborg University, Denmark."},{"key":"6889_CR41","unstructured":"Jensen, C. S., & Kong, A. (1996). Blocking Gibbs sampling for linkage analysis in large pedigrees with many loops. Research Report R-96-2048, Department of Computer Science, Aalborg University, Denmark."},{"key":"6889_CR42","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1023\/A:1007665907178","volume":"37","author":"M. I. Jordan","year":"1999","unstructured":"Jordan, M. I., Ghahramani, Z., T.S., J., & L.K., S. (1999). An introduction to variational methods for graphical models. Machine Learning, 37, 183\u2013233.","journal-title":"Machine Learning"},{"key":"6889_CR43","unstructured":"Kocka, T., Bouckaert, R., & Studeny, M. (2001). On the inclusion problem. Technical report, Academy of Sciences of the Czech Republic."},{"key":"6889_CR44","first-page":"549","volume":"5","author":"M. Kovisto","year":"2004","unstructured":"Kovisto, M., & Sood, K. (2004). Exact Bayesian structure discovery in Bayesian networks. Journal of Machine Learning Research, 5, 549\u2013573.","journal-title":"Journal of Machine Learning Research"},{"key":"6889_CR45","unstructured":"Koller, D., & Sahami, M. (1996). Toward optimal feature selection. In Thirteen International Conference in Machine Learning."},{"key":"6889_CR46","unstructured":"Komarek, P., & Moore, A. (2000). A dynamic adaptation of AD-trees for efficient machine learning on large data sets. In Proc. 17th International Conf. on Machine Learning (pp. 495\u2013502). San Francisco, CA: Morgan Kaufmann."},{"key":"6889_CR47","doi-asserted-by":"crossref","first-page":"197","DOI":"10.1016\/S0168-1699(02)00007-8","volume":"33","author":"K. Kristensen","year":"2002","unstructured":"Kristensen, K., & Rasmussen, I. A. (2002). The use of a Bayesian network in the design of a decision support system for growing malting barley without use of pesticides. Computers and Electronics in Agriculture, 33, 197\u2013217.","journal-title":"Computers and Electronics in Agriculture"},{"key":"6889_CR48","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1214\/aoms\/1177729694","volume":"22","author":"S. Kullback","year":"1951","unstructured":"Kullback, S., & Leibler, R. (1951). On information and sufficiency. Annals of Mathematical Statistics, 22, 79\u201386.","journal-title":"Annals of Mathematical Statistics"},{"key":"6889_CR49","unstructured":"Margaritis, D., & Thrun, S. (1999). Bayesian network induction via local neighborhoods. In Advances in Neural Information Processing Systems 12 (NIPS)."},{"key":"6889_CR50","unstructured":"Margaritis, D., & Thrun, S. (2001). A Bayesian multiresolution independence test for continuous variables. In 17th Conference on Uncertainty in Artificial Intelligence (UAI)."},{"key":"6889_CR51","unstructured":"Meek, C. (1995). Strong completeness and faithfulnes in Bayesian networks. In Conference on Uncertainty in Artificial Intelligence 411\u2013418."},{"key":"6889_CR52","unstructured":"Meek, C. (1997). Graphical models: Selecting causal and statistical models. Ph.D. thesis, Carnegie Mellon University."},{"key":"6889_CR53","doi-asserted-by":"crossref","first-page":"67","DOI":"10.1613\/jair.453","volume":"8","author":"A. Moore","year":"1998","unstructured":"Moore, A., & Lee, M. (1998). Cached sufficient statistics for efficient machine learning with large datasets. Journal of Artificial Intelligence Research, 8, 67\u201391.","journal-title":"Journal of Artificial Intelligence Research"},{"key":"6889_CR54","unstructured":"Moore, A., & Schneider, J. (2002). Real-valued all-dimensions search: Low-overhead rapid searching over subsets of attributes. In Proceedings of the Conference on Uncertainty in Artificial Intelligence (UAI-2002) (pp. 360\u2013369)."},{"key":"6889_CR55","unstructured":"Moore, A., & Wong, W. (2003). Optimal reinsertion: A new search operator for accelerated and more accurate Bayesian network structure learning. In Twentieth International Conference on Machine Learning (ICML-2003)."},{"key":"6889_CR56","unstructured":"Neapolitan, R. (2003). Learning Bayesian networks. Prentice Hall."},{"key":"6889_CR57","unstructured":"Nielson, J., Kocka, T., & Pena, J. (2003). On local optima in learning bayesian networks. In Proceedings of the Nineteenth Conference on Uncertainty in Artificial Intelligence, 435\u2013442."},{"key":"6889_CR58","volume-title":"Probabilistic reasoning in intelligent systems","author":"J. Pearl","year":"1988","unstructured":"Pearl, J. (1988). Probabilistic reasoning in intelligent systems. San Mateo, CA: Morgan Kaufmann."},{"key":"6889_CR59","unstructured":"Pearl, J. (2000). Causality, models, reasoning, and inference. Cambridge University Press."},{"key":"6889_CR60","unstructured":"Pearl, J., & Verma, T. (1991). A theory of inferred causation. In J. F. Allen, R. Fikes, & E. Sandewall (Eds.), KR\u201991: Principles of knowledge representation and reasoning (pp. 441\u2013452). San Mateo, California: Morgan Kaufmann."},{"key":"6889_CR61","doi-asserted-by":"crossref","unstructured":"Peterson, W., TG, B., & Fox, W. (1954). The theory of signal detectability. IRE Professional Group on Information Theory PGIT-4, 171\u2013212.","DOI":"10.1109\/TIT.1954.1057460"},{"key":"6889_CR62","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1016\/0005-1098(78)90005-5","volume":"14","author":"J. Rissanen","year":"1978","unstructured":"Rissanen, J. (1978). Modeling by shortest data description. Automatica, 14, 465\u2013671.","journal-title":"Automatica"},{"key":"6889_CR63","first-page":"223","volume":"Series B, 49","author":"J. Rissanen","year":"1987","unstructured":"Rissanen, J. (1987). Stochastic complexity. Journal of the Royal Statistical Soceity, Series B, 49, 223\u2013239.","journal-title":"Journal of the Royal Statistical Soceity"},{"key":"6889_CR64","doi-asserted-by":"crossref","first-page":"461","DOI":"10.1214\/aos\/1176344136","volume":"6","author":"G. Schwarz","year":"1978","unstructured":"Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461\u2013464.","journal-title":"The Annals of Statistics"},{"issue":"2\/3","key":"6889_CR65","doi-asserted-by":"crossref","first-page":"163","DOI":"10.1023\/A:1009891813863","volume":"4","author":"C. Silverstein","year":"2000","unstructured":"Silverstein, C., Brin, S., Motwani, R., & Ullman, J. (2000). Scalable techniques for mining causal structures. Data Mining and Knowledge Discovery, 4 (2\/3), 163\u2013192.","journal-title":"Data Mining and Knowledge Discovery"},{"key":"6889_CR66","doi-asserted-by":"crossref","unstructured":"Singh, M., & Valtorta, M. (1993). An algorithm for the construction of Bayesian network structures from data. In 9th Conference on Uncertainty in Artificial Intelligence, pp. 259\u2013265.","DOI":"10.1016\/B978-1-4832-1451-1.50036-6"},{"key":"6889_CR67","doi-asserted-by":"crossref","first-page":"3273","DOI":"10.1091\/mbc.9.12.3273","volume":"9","author":"P. T. Spellman","year":"1998","unstructured":"Spellman, P. T., Sherlock, G., Zhang, M. Q., Iyer, V. R., Anders, K. et al. & Eisen, M. B. (1998). Comprehensive identification of cell cycle regulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell, 9, 3273\u20133297.","journal-title":"Molecular Biology of the Cell"},{"key":"6889_CR68","unstructured":"Spirtes, P., Glymour, C., & Scheines, R. (1990). Causality from probability. In J. Tiles, G. McKee, & G. Dean (eds.): Evolving knowledge in the natural and behavioral sciences (pp. 181\u2013199). London: Pittman."},{"key":"6889_CR69","doi-asserted-by":"crossref","unstructured":"Spirtes, P., Glymour, C. & Scheines, R. (1993). Causation, prediction, and search. Springer\/Verlag, first edition.","DOI":"10.1007\/978-1-4612-2748-9"},{"key":"6889_CR70","unstructured":"Spirtes, P., Glymour, C., & Scheines, R. (2000). Causation, prediction, and search. The MIT Press, second edition."},{"key":"6889_CR71","unstructured":"Spirtes, P., & Meek, C. (1995). Learning Bayesian networks with discrete variables from data. In Proceedings from First Annual Conference on Knowledge Discovery and Data Mining (pp. 294\u2013299). Morgan Kaufmann."},{"key":"6889_CR72","unstructured":"Statnikov, A., Tsamardinos, I., & Aliferis, C. F. (2003). An algorithm for the generation of large Bayesian networks. Technical Report DSL-03-01, Vanderbilt University."},{"key":"6889_CR73","unstructured":"Steck, H., & Jaakkola, T. (2002). On the dirichlet prior and Bayesian regularization. In Advances in Neural Information Processing Systems, 15."},{"key":"6889_CR74","unstructured":"Tsamardinos, I., & Aliferis, C. F. (2003). Towards principled feature selection: Relevancy, filters and wrappers. In Ninth International Workshop on Artificial Intelligence and Statistics (AI & Stats 2003)."},{"key":"6889_CR75","unstructured":"Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003b). Algorithms for large scale markov blanket discovery. In The 16th International FLAIRS Conference (pp. 376\u2013381)."},{"key":"6889_CR76","doi-asserted-by":"crossref","unstructured":"Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003c). Time and sample efficient discovery of Markov blankets and direct causal relations. In The Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 673\u2013678).","DOI":"10.1145\/956750.956838"},{"key":"6889_CR77","doi-asserted-by":"crossref","unstructured":"Tsamardinos, I., Aliferis, C. F., & Statnikov, A. (2003a). Time and sample efficient discovery of Markov Blankets and direct causal relations. Technical Report DSL-03-02, Vanderbilt University.","DOI":"10.1145\/956804.956838"},{"key":"6889_CR78","unstructured":"Tsamardinos, I., Aliferis, C. F., Statnikov, A., & Brown. L. E. (2003a). Scaling-Up Bayesian network learning to thousands of variables using local Learning Technique. Technical Report DSL TR-03-02, Dept. Biomedical Informatics, Vanderbilt University."},{"key":"6889_CR79","unstructured":"Tsamardinos, I., Statnikov, A., Brown, L. E., and Aliferis, C. F. (2006) Generating realistic large bayesian networks by tiling. In The 19th International FLAIRS Conference (to appear)."},{"key":"6889_CR80","unstructured":"Verma, T., & Pearl, J. (1988). Causal networks: Semantics and expressiveness. In: 4th Workshop on Uncertainty in Artificial Intelligence."},{"key":"6889_CR81","unstructured":"Verma, T., & Pearl, J. (1990). Equivalence and synthesis of causal models. In Proceedins of 6th Annual Conference on Uncertainty in Artificial Intelligence (pp. 255\u2013268). Elsevier Science."}],"container-title":["Machine Learning"],"original-title":[],"language":"en","link":[{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-006-6889-7.pdf","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/article\/10.1007\/s10994-006-6889-7\/fulltext.html","content-type":"text\/html","content-version":"vor","intended-application":"text-mining"},{"URL":"http:\/\/link.springer.com\/content\/pdf\/10.1007\/s10994-006-6889-7","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2019,6,1]],"date-time":"2019-06-01T01:40:21Z","timestamp":1559353221000},"score":1,"subtitle":[],"short-title":[],"issued":{"date-parts":[[2006,3,28]]},"references-count":81,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2006,10]]}},"alternative-id":["6889"],"URL":"http:\/\/dx.doi.org\/10.1007\/s10994-006-6889-7","relation":{},"ISSN":["0885-6125","1573-0565"],"issn-type":[{"value":"0885-6125","type":"print"},{"value":"1573-0565","type":"electronic"}],"subject":["Artificial Intelligence","Software"],"published":{"date-parts":[[2006,3,28]]}}}